
Fixed-point Arithmetic Architecture of a Physically-

meaningful Perceptron for Digital Pre-distorters

 Juliana C. L. Pereira, Felipe A. Schoulten, Caio P. Mizerkowski, Sibilla B. L. França, Eduardo G. Lima
Grupo de Circuitos e Sistemas Integrados (GICS) – Departamento de Engenharia Elétrica

Universidade Federal do Paraná, Curitiba, Brazil

Abstract—Three-layer perceptrons (TLPs) are one of the

approaches to model the inverse transfer characteristics of

power amplifiers (PAs) for digital baseband pre-distortion

(DPD). When a set of signals composed of amplitudes and

trigonometric functions of phase differences are applied to the

TLP inputs, only useful contributions for DPD purposes are

generated. In literature, such physically-meaningful TLP has

been investigated only in floating-point arithmetic. This work

contribution is to present an architecture suitable for fixed-

point arithmetic, in which complex operations are replaced by

linearly interpolated look-up tables (LUTs). In Matlab

software using floating-point arithmetic, a model was first

trained to mimic input and output data measured on a

LDMOS class AB PA stimulated by a WCDMA envelope. The

TLP was then converted to fixed-point arithmetic and

translated to VHDL language. Xilinx ISE post-place and route

simulations targeting the Xilinx Artix7 XC7A200T FPGA

shows that the synthesized code uses 3095 slice LUTs and 3362

flip-flops to provide a modeling accuracy of -37.9 dB in

normalized mean square error.

Keywords—power amplifier, neural network, VHDL.

I. INTRODUCTION

The power amplifier (PA) is one of the most important
devices in wireless communication systems [1]. In such
applications, the PA needs to transmit as much power as
possible, to behave linearly and to be efficient. In many
situations, the PA nonlinear characteristics cause undesired
distortions. A viable work-around can be found through the
use of a digital pre-distortion (DPD) technique [2], which
consists of a digital system cascaded with the PA that
purposefully distorts its input signal. When the distortion
caused by the DPD is inversely related to the distortion
caused by the PA, the cascade system tends to become linear.

The DPD scheme requires a model able to represent the
inverse transfer characteristic of a PA. Three-layer
perceptrons (TLPs) are suitable for that purpose [3]. In the
customized TLP-based model for DPD purposes presented
in [4], the signals used as input were based on the sine and
cosine of the difference between two consecutive phase
components. However, only results in floating-point
arithmetic are reported in [4].

In a practical DPD application, the model must be
synthesized in a field programmable gate array (FPGA)
using fixed-point arithmetic. In doing that, several practical
aspects must be addressed. One of them is how to perform
complex mathematical operations, such as square root or
division. Besides, when working with binary numbers, the
result of a multiplication doubles the quantity of bits in a
message. To keep unchanged the number of bits, a
mechanism to reduce by half the number of bits after each
multiplication is required. Since the application needs to be
operational in a frequency on the order of tens of MHz, the

time available for the execution of every operation cannot
exceed a few tens of ns. In order to make it possible, it is
necessary to use the inherent parallel characteristics of
FPGAs by breaking the hardware description language code
into independent operational blocks that are processed
simultaneously. The goal of this work is to present an
architecture suitable for the real-time processing in fixed-
point arithmetic of such TLP-based model.

This paper will be presented in the following structure.
In Section II, the floating-point TLP model will be detailed.
In Section III, the fixed-point architecture will be presented.
Results from a case study will be reported in Section IV and
conclusions will be discussed in Section V.

II. FLOATING-POINT TLP-BASED ARCHITECTURE

Artificial neural networks (ANNs) are used in many
fields of the science and technology and that is a result of
their capacities to approximate continuous functions in an
arbitrary interval, which has been demonstrated, for the case
of the multi-layer perceptron (MLP), in [5]. In the ANN
addressed in here, the perceptron, a mathematical concept
based in the neuron, is the fundamental structure. The
perceptron is a linear separator, which receives an n-
dimensional input and returns in which side of a hyperplane,
defined by the coefficients of the perceptron, the input is.
The decision of the perceptron is a result of the sum of the
values of the inputs, weighted by a set of coefficients,
known as weights, with the addition of an extra input named
bias. The result of that operation is transferred to an
activation function, normally the Heaviside function in the
case of a single perceptron, and the result is a value that
indicates in what side of the hyperplane the input is.

With the appropriate training, a perceptron is capable of
slicing any linearly separable set of points, but for more
complex tasks, as the problem addressed in this work, a
more sophisticated tool is necessary. One of these tools is
the MLP, which is an extension of the perceptron by the
addition of multiple layers composed by many perceptrons.
In each of these layers, the input is processed by the sum
and the use of an activation function, and passed for the next
layer. Additionally to these layers, known as hidden layers,
the MLP has an input layer, which receives the input and
whose outcome is transferred to the first hidden layer, and
the output layer, which is also composed by perceptrons and
the final layer of the network.

A special case of the MLP is the three-layer perceptron
(TLP), which has the input and output layers, but only one
hidden layer. The TLP is the base of the ANN architecture
used in this work and its unique hidden layer is sufficient to
approximate any continuous function as demonstrated by
the universal approximation theorem [5]. The network
hidden and output layers have equal characteristics, in

particular, they both use the hyperbolic tangent sigmoid as
the activation function.

However, the traditional TLP network has a problem to
work with complex-valued signals, as is the case of the
modeling addressed in this work. A more powerful
architecture is used to solve that problem by a preprocessing
of the signal and the separation of the output in its real and
imaginary parts [4]. The separation is made by the use of
two TLP networks, which receive the same set of
preprocessed inputs, but the training of the coefficients are
made using different parts of the output: one network is
trained to approximate the real part and the other to
approximate the imaginary part. In both cases, the output
phase is modified by the subtraction of the input phase.

The preprocessed input is defined as a vector with the
absolute value of the input in the current (n) and previous
(n-m) instants, and the cosine and sine of phase difference
between two consecutive instants. The amount of previous
instants used in this work is arbitrarily set to 2, which results
in 7 inputs to each TLP. However, the implementation of a
larger memory length is straightforward. The total amount
of coefficients can then be determined as a function of the
number of perceptrons (N) in the hidden layer, for N greater
than 1, which results in 9N+1 coefficients for each TLP.

III. FIXED-POINT TLP-BASED ARCHITECTURE

Targeting a simpler FPGA implementation, the first step
is to convert signals from floating-point into fixed-point
arithmetic. This process is done in the following manner.
Initially every complex number, representing PA input and
output signals, is multiplied by a constant real gain in order
to guarantee that all real and imaginary parts lie in the range
-1 to 1. It is then assumed that the decimal 1 is represented
by 2 to the power of the number of resolution bits. Although
this limitation exists on the input and output signals, it is
possible that numbers with magnitude greater than one
appear at some point inside the neural network model. To
represent these higher values, extra bits are added to the left
in order to avoid overflow (for example, if 10 is considered
to be the highest number, four extra bits are needed, since 2

4

> 10 and 2
3
 < 10). So the number of bits in fixed-point

representation consists of the number of resolution bits plus
the extra bits used to avoid overflow plus one sign bit.

Every mathematical operation is done using multipliers,
adders or LUTs, with the former two consisting of two
inputs and one output. There exist other mathematical
functions throughout the neural network (more specifically,
the reciprocal, square root and hyperbolic tangent sigmoid
functions). These are calculated using LUTs and linear
interpolation. Since creating a LUT that addresses every
possibility is considerably arduous work that would waste
too much processing time in an application that is very time
sensitive, especially in a case with signals represented by a
high number of bits, the number of bits used to address the
LUT is reduced. For every address there is two
correspondent coefficients, a (angular) and b (linear), that
are used to compute a linear function in the form of au + b.,
where u is the input value. Therefore, the calculation of each
of these functions is performed by doing a reading of two
values stored in a LUT, one multiplication and one sum.

When a binary multiplication is done, the number of bits
is doubled. To keep the system consistent, this result needs
to have N bits instead of 2N. Recalling that each number is

formed by a sign bit, resolution bits and extra bits to avoid
overflow, and also that every number lies between -1 and 1,
the solution to keep each number with N bits is to round
them by discarding some of the least significant resolution
bits and some of the most significant overflow bits.

The execution of each of these operations takes time.
There is not much that can be done in a single clock cycle of
a few tens of ns. Only one operation can be executed in a
clock cycle, which means they all need to be executed at the
same time. This justifies the use of a dedicated hardware
design described in VHDL. This allows the logic to be
divided into many blocks, each of them responsible for one
operation, which consequently lets for all of them to be
processed at the same time. Given that this separation is
made, it becomes possible to create a structure that can
operate at high sampling frequencies.

The block diagram that represents the introduced fixed-
point arithmetic architecture for the TLP-based model is
shown in Fig. 1, where the complex-valued input and output
signals are indicated by x and s, respectively, the present
instant is [n], and the past instants are [n-1] and [n-2].

Fig. 1. TLP-based block diagram.

The block diagram of Fig. 1 can be divided into three
segments. The first one calculates the seven signals that are
used as inputs to both TLPs. The second one computes the
outputs of the TLPs themselves, which correspond to the
real and imaginary parts of the complex number y[n].
Finally, the third one calculates the real and imaginary parts
of the output signal.

In what concerns the first segment, the real and
imaginary parts of the complex-valued inputs x[n], x[n-1]
and x[n-2] are used to calculate the seven inputs for the
TLPs, according to Fig. 2.

The process starts, in the first clock cycle, by calculating
the squares of each input (both real and imaginary parts)
using multipliers. In the second clock, the sums of real and
imaginary parts are calculated. To compute the square roots,
as mentioned before, linearly interpolated LUTs are used. In
the third clock cycle, line coefficients a and b previously
stored in the LUTs are read. The fourth clock cycle is
responsible for the multiplications of the angular
coefficients (a) and their respective LUT inputs and the fifth
clock cycle for the additions of the linear coefficients (b) to
their respective results of the previous cycle.

Fig. 2. Detailed diagram of the block called input decomposition in Fig. 1.

With the absolute values calculated, the sines and
cosines could be obtained. Recall that these are
trigonometric functions of an angle difference. Euler’s
Formula defines a complex number as

e��� � cos	
��
 �sin	
��. (1)

Using exponential properties, it can be shown that

e��� . e������ � e�	��������

e��� . e������ � cos	
� �
����
 �sin	
� �
����. (2)

Because either exponential or trigonometric functions
are not synthesizable (i.e. they cannot be directly translated

into a digital logic), the expression e��� . e������ needed to
be described using basic logics, such as adders and
multipliers, in a way to achieve the same functionalities. By
definition, it is given that

�	��

|�	��|
� e���, (3)

where x(n) is a complex number. Replacing (3) in (2),

e��� . e������ �
�	��

|�	��|
.

��	����

|�	����|
�

�	��.��	����

|�	��|.|�	����|
 , (4)

where ()* is the conjugate operator. The multiplication
between two complex numbers is equivalent to four
multiplications and two additions between two real
numbers.

Since the values of x(n) and x(n-1) are applied as inputs,
and hence do not depend on any value from previous clocks,
the multiplications and additions involving them are done in
the first and second clock cycles and stored to be used later.
Since the next operation is a reciprocal function, a LUT is

used to compute the result of
�

|�	��|
 and

�

|�	����|
. It went from

the sixth to eighth clock cycles and it is done in the same
way the square root was calculated. Then, the ninth clock
cycle is necessary to calculate

��	�� � �	��. �*	� � 1�.
�

|�	��|
 (5)

and the tenth for

�	�� � ��	��.
�

|�	����|
. (6)

All of these steps are repeated for the trigonometric
functions for
��� �
���.

Now that the TLP inputs are calculated, the second
segment, detailed in Fig. 3, begins to be executed.

Fig. 3. Detailed diagram of the TLP structure.

The perceptron is divided in three layers and has two
neurons. The first layer is responsible for doing a linear
combination with the weight vectors w1 and w2 (one
corresponding to each input, both with 14 elements) and the
biases b1 and b2 (one corresponding to each neuron). The
operations involved here are 28 multiplications (one for
each input) that are computed in the 11th clock cycle, and
the sum of these values with the corresponding bias. Adding
eight values (seven inputs plus bias) in a single clock cycle
is not viable for the desired frequency, so this operation was
divided into three clock cycles (12th through 14th). The
hidden layer takes the result from the first layer and passes it
through a hyperbolic tangent sigmoid function. Such as the
square root and reciprocal functions, it is calculated using a
LUT and linear interpolation, and this is done from the 15th
through 17th clock cycles. The third and last layer takes the
results from the second layer and multiplies each one by the
weights h1 and h2 (18th clock cycle), and then adds the
result to an extra bias (19th cycle). The perceptron output is
done from 20th to 22nd clock cycles and is calculated from
the hyperbolic tangent sigmoid function via linearly
interpolated LUTs.

These operations are repeated for both perceptrons, and
their outputs correspond to the real and imaginary parts of a
complex number. What distinguishes one perceptron from
the other is the numeric values of the weights and biases.

Now, with the outputs from the perceptron, it starts the
third segment, which computes the output from the whole
model. For it to be done, it is necessary to multiply the
complex number formed by the outputs of the perceptrons
by the sine and cosine from the time instant n.

From (1) and (3), the sine and cosine are given by

cos	
����� �
 !"����#

|����|
 (7)

sin	
����� �
$%"����#

|����|
 (8)

Since
�

|����|
 was already calculated, there is no need to do

it again. Because both sine and cosine depend only on the
value of |����|, they were previously calculated and stored.

Finally, the following complex multiplication is done

&��� � �Re"(���#
 �Im"(���#��cos	
�����
 �sin	
�����
� �Re"(���#. cos	
����� � Im"(���#. sin	
������

��Im"(���#. cos	
�����
 Re"(���#. sin	
������ 	9�

The output s[n] is then obtained in the 23rd cycle, where
the multiplications are calculated, and 24th, where the result
of the neural network is calculated from the additions.

IV. SIMULATION RESULTS

The presented architecture is now applied to the inverse
modeling of a class AB Si laterally diffused metal oxide
semiconductor (LDMOS) PA. A 2 GHz carrier modulated by
a 3.84 MHz 3GPP Wideband Code Division Multiple
Access (WCDMA) envelope feeds the PA. An Agilent MXA
N9020A vector signal analyzer (VSA) is used to collect PA
output envelope sampled at 30.72 MHz. In Matlab software
using floating-point arithmetic, several TLP-based models
are trained using nonlinear least squares based on the
Levenberg-Marquardt. Table I shows the normalized mean
square error (NMSE) as a function of the number of hidden
neurons. Only slightly improvements are observed for larger
values of N. The NMSE for N = 8 is equal to -39.6 dB.

TABLE I. FLOATING-POINT SIMULATION RESULTS

Number of hidden neurons NMSE (dB)

1 -28.1

2 -38.1

3 -39.4

 A TLP-based model with 2 neurons is chosen to be
converted to fixed-point arithmetic. Table II reports the
fixed-point NMSE results in relation of the number of
resolution bits, which the sign bit is not included, and of
LUT addressable bits for the square root, reciprocal and
hyperbolic tangent sigmoid functions. From Table II, it is
noted that its last row case presented the best compromise
between accuracy and complexity, such that this case is
chosen for a hardware description language realization.
Figure 4 presents the measured and estimated output
amplitude as function of the input amplitude. Figure 5
presents the measured and estimated output power spectral
densities (PSDs). From Fig. 4, it is observed that the
estimated and measured signals show a PA inverse behavior
in which both are very similar to each other. From Fig. 5, it
is noticed that outputs present small amount of distortions,
although the estimated samples have greater levels.

TABLE II. FIXED-POINT SIMULATION RESULTS

Number of

resolution

bits

Number of LUT addressable bits
NMSE

(dB)
Square-
root

Reciprocal
Hyperbolic

tangent sigmoid

22 10 9 8 -31.9

23 10 9 8 -36.5

24 10 9 7 -36.3

24 10 9 8 -37.8

25 9 9 8 -37.7

25 10 9 6 -28.6

25 9 8 8 -37.7

25 10 9 8 -37.9

Fig. 4. Output amplitudes as a function of input amplitudes.

The fixed-point architecture is described using VHDL.
To check the validity of the described circuit, a behavioral
simulation is done on the ISE Software using the ISim
Simulator to verify if the values obtained in the VHDL code

matched the values obtained via MATLAB. All the results
match, proving the correctness of the implemented VHDL
code. A post-place and route simulation is also done, using
the Xilinx Artix7 XC7A200T FPGA as target device. The
natural delays of the operations are below one clock time. If
a discrete-time sequence of length L with a sampling
interval of 32.55 ns is applied at the input, then an output
sequence with same length and sampling frequency will be
available after a constant delay of 781.2 ns. Besides, the
synthesized code used 3095 slice LUTs and 3362 flip-flops.

Fig. 5. PSDs of output signals.

V. CONCLUSIONS

This work has addressed important aspects related to the
fixed-point arithmetic description of a TLP-based model
suitable for PA linearization purposes. The generation of
sine and cosine of phase differences has been performed
using the amplitude information together with a reciprocal
function and some additional multiplications and sums.
Square root, reciprocal and hyperbolic tangent sigmoid
functions were replaced by lines with distinct slopes, that
were performed by reading two line coefficients previously
stored in LUTs, followed by a multiplication and an
addition. Considering the high number of successive
multiplications demanded by the TLP-based model and that
outcomes from two input multipliers doubles the quantity of
bits, after each multiplication half of the bits were removed
in a way to minimize the degradation in modeling accuracy.
Each basic operation was implemented by an exclusive
hardware and parallelism was fully exploited to guarantee
the fulfillment of the real-time requirements. Simulation
results from a case study show that a modeling accuracy of -
37.9 dB in NMSE was achieved when the synthesized
VHDL code requires 3095 slice LUTs and 3362 flip-flops.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial
support provided by Programa de Iniciação Científica da
Universidade Federal do Paraná, UFPR/Tesouro Nacional,
and by Pró-Reitoria de Assuntos Estudantis (PRAE-UFPR).

REFERENCES

[1] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd
edition. Norwood, MA: Artech House, 2006.

[2] P. B. Kenington, High Linearity RF Amplifier Design. Norwood, MA:
Artech House, 2000.

[3] J. C. Pedro and S. A. Maas, “A comparative overview of microwave
and wireless power-amplifier behavioral modeling approaches,” IEEE
Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1150–1163, Apr.
2005.

[4] L. B. C. Freire, C. Franca, and E. G. Lima, “A Modified Real-Valued
Feed-Forward Neural Network Low-Pass Equivalent Behavioral
Model for RF Power Amplifiers,” Prog. Electromagn. Res. C, vol. 57,
43–52, 2015.

[5] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

