
Fixed-point Arithmetic Architecture of a Physically-

meaningful Perceptron for Digital Pre-distorters 

 Juliana C. L. Pereira, Felipe A. Schoulten, Caio P. Mizerkowski, Sibilla B. L. França, Eduardo G. Lima 
Grupo de Circuitos e Sistemas Integrados (GICS) – Departamento de Engenharia Elétrica 

Universidade Federal do Paraná, Curitiba, Brazil 
 

Abstract—Three-layer perceptrons (TLPs) are one of the 

approaches to model the inverse transfer characteristics of 

power amplifiers (PAs) for digital baseband pre-distortion 

(DPD). When a set of signals composed of amplitudes and 

trigonometric functions of phase differences are applied to the 

TLP inputs, only useful contributions for DPD purposes are 

generated. In literature, such physically-meaningful TLP has 

been investigated only in floating-point arithmetic. This work 

contribution is to present an architecture suitable for fixed-

point arithmetic, in which complex operations are replaced by 

linearly interpolated look-up tables (LUTs). In Matlab 

software using floating-point arithmetic, a model was first 

trained to mimic input and output data measured on a 

LDMOS class AB PA stimulated by a WCDMA envelope. The 

TLP was then converted to fixed-point arithmetic and 

translated to VHDL language. Xilinx ISE post-place and route 

simulations targeting the Xilinx Artix7 XC7A200T FPGA 

shows that the synthesized code uses 3095 slice LUTs and 3362 

flip-flops to provide a modeling accuracy of -37.9 dB in 

normalized mean square error. 
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I. INTRODUCTION  

The power amplifier (PA) is one of the most important 
devices in wireless communication systems [1]. In such 
applications, the PA needs to transmit as much power as 
possible, to behave linearly and to be efficient. In many 
situations, the PA nonlinear characteristics cause undesired 
distortions. A viable work-around can be found through the 
use of a digital pre-distortion (DPD) technique [2], which 
consists of a digital system cascaded with the PA that 
purposefully distorts its input signal. When the distortion 
caused by the DPD is inversely related to the distortion 
caused by the PA, the cascade system tends to become linear. 

The DPD scheme requires a model able to represent the 
inverse transfer characteristic of a PA. Three-layer 
perceptrons (TLPs) are suitable for that purpose [3]. In the 
customized TLP-based model for DPD purposes presented 
in [4], the signals used as input were based on the sine and 
cosine of the difference between two consecutive phase 
components. However, only results in floating-point 
arithmetic are reported in [4].  

In a practical DPD application, the model must be 
synthesized in a field programmable gate array (FPGA) 
using fixed-point arithmetic. In doing that, several practical 
aspects must be addressed. One of them is how to perform 
complex mathematical operations, such as square root or 
division. Besides, when working with binary numbers, the 
result of a multiplication doubles the quantity of bits in a 
message. To keep unchanged the number of bits, a 
mechanism to reduce by half the number of bits after each 
multiplication is required. Since the application needs to be 
operational in a frequency on the order of tens of MHz, the 

time available for the execution of every operation cannot 
exceed a few tens of ns. In order to make it possible, it is 
necessary to use the inherent parallel characteristics of 
FPGAs by breaking the hardware description language code 
into independent operational blocks that are processed 
simultaneously. The goal of this work is to present an 
architecture suitable for the real-time processing in fixed-
point arithmetic of such TLP-based model. 

This paper will be presented in the following structure. 
In Section II, the floating-point TLP model will be detailed. 
In Section III, the fixed-point architecture will be presented. 
Results from a case study will be reported in Section IV and 
conclusions will be discussed in Section V. 

II. FLOATING-POINT TLP-BASED ARCHITECTURE 

Artificial neural networks (ANNs) are used in many 
fields of the science and technology and that is a result of 
their capacities to approximate continuous functions in an 
arbitrary interval, which has been demonstrated, for the case 
of the multi-layer perceptron (MLP), in [5]. In the ANN 
addressed in here, the perceptron, a mathematical concept 
based in the neuron, is the fundamental structure. The 
perceptron is a linear separator, which receives an n-
dimensional input and returns in which side of a hyperplane, 
defined by the coefficients of the perceptron, the input is. 
The decision of the perceptron is a result of the sum of the 
values of the inputs, weighted by a set of coefficients, 
known as weights, with the addition of an extra input named 
bias. The result of that operation is transferred to an 
activation function, normally the Heaviside function in the 
case of a single perceptron, and the result is a value that 
indicates in what side of the hyperplane the input is. 

With the appropriate training, a perceptron is capable of 
slicing any linearly separable set of points, but for more 
complex tasks, as the problem addressed in this work, a 
more sophisticated tool is necessary. One of these tools is 
the MLP, which is an extension of the perceptron by the 
addition of multiple layers composed by many perceptrons. 
In each of these layers, the input is processed by the sum 
and the use of an activation function, and passed for the next 
layer. Additionally to these layers, known as hidden layers, 
the MLP has an input layer, which receives the input and 
whose outcome is transferred to the first hidden layer, and 
the output layer, which is also composed by perceptrons and 
the final layer of the network. 

A special case of the MLP is the three-layer perceptron 
(TLP), which has the input and output layers, but only one 
hidden layer. The TLP is the base of the ANN architecture 
used in this work and its unique hidden layer is sufficient to 
approximate any continuous function as demonstrated by 
the universal approximation theorem [5]. The network 
hidden and output layers have equal characteristics, in 



particular, they both use the hyperbolic tangent sigmoid as 
the activation function. 

However, the traditional TLP network has a problem to 
work with complex-valued signals, as is the case of the 
modeling addressed in this work. A more powerful 
architecture is used to solve that problem by a preprocessing 
of the signal and the separation of the output in its real and 
imaginary parts [4]. The separation is made by the use of 
two TLP networks, which receive the same set of 
preprocessed inputs, but the training of the coefficients are 
made using different parts of the output: one network is 
trained to approximate the real part and the other to 
approximate the imaginary part. In both cases, the output 
phase is modified by the subtraction of the input phase. 

The preprocessed input is defined as a vector with the 
absolute value of the input in the current (n) and previous 
(n-m) instants, and the cosine and sine of phase difference 
between two consecutive instants. The amount of previous 
instants used in this work is arbitrarily set to 2, which results 
in 7 inputs to each TLP. However, the implementation of a 
larger memory length is straightforward. The total amount 
of coefficients can then be determined as a function of the 
number of perceptrons (N) in the hidden layer, for N greater 
than 1, which results in 9N+1 coefficients for each TLP. 

III. FIXED-POINT TLP-BASED ARCHITECTURE 

Targeting a simpler FPGA implementation, the first step 
is to convert signals from floating-point into fixed-point 
arithmetic. This process is done in the following manner. 
Initially every complex number, representing PA input and 
output signals, is multiplied by a constant real gain in order 
to guarantee that all real and imaginary parts lie in the range 
-1 to 1. It is then assumed that the decimal 1 is represented 
by 2 to the power of the number of resolution bits. Although 
this limitation exists on the input and output signals, it is 
possible that numbers with magnitude greater than one 
appear at some point inside the neural network model. To 
represent these higher values, extra bits are added to the left 
in order to avoid overflow (for example, if 10 is considered 
to be the highest number, four extra bits are needed, since 2
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> 10 and 2
3
 < 10). So the number of bits in fixed-point 

representation consists of the number of resolution bits plus 
the extra bits used to avoid overflow plus one sign bit. 

Every mathematical operation is done using multipliers, 
adders or LUTs, with the former two consisting of two 
inputs and one output. There exist other mathematical 
functions throughout the neural network (more specifically, 
the reciprocal, square root and hyperbolic tangent sigmoid 
functions). These are calculated using LUTs and linear 
interpolation. Since creating a LUT that addresses every 
possibility is considerably arduous work that would waste 
too much processing time in an application that is very time 
sensitive, especially in a case with signals represented by a 
high number of bits, the number of bits used to address the 
LUT is reduced. For every address there is two 
correspondent coefficients, a (angular) and b (linear), that 
are used to compute a linear function in the form of au + b., 
where u is the input value. Therefore, the calculation of each 
of these functions is performed by doing a reading of two 
values stored in a LUT, one multiplication and one sum. 

When a binary multiplication is done, the number of bits 
is doubled. To keep the system consistent, this result needs 
to have N bits instead of 2N. Recalling that each number is 

formed by a sign bit, resolution bits and extra bits to avoid 
overflow, and also that every number lies between -1 and 1, 
the solution to keep each number with N bits is to round 
them by discarding some of the least significant resolution 
bits and some of the most significant overflow bits. 

The execution of each of these operations takes time. 
There is not much that can be done in a single clock cycle of 
a few tens of ns. Only one operation can be executed in a 
clock cycle, which means they all need to be executed at the 
same time. This justifies the use of a dedicated hardware 
design described in VHDL. This allows the logic to be 
divided into many blocks, each of them responsible for one 
operation, which consequently lets for all of them to be 
processed at the same time. Given that this separation is 
made, it becomes possible to create a structure that can 
operate at high sampling frequencies. 

The block diagram that represents the introduced fixed-
point arithmetic architecture for the TLP-based model is 
shown in Fig. 1, where the complex-valued input and output 
signals are indicated by x and s, respectively, the present 
instant is [n], and the past instants are [n-1] and [n-2]. 

 

Fig. 1. TLP-based block diagram.  

The block diagram of Fig. 1 can be divided into three 
segments. The first one calculates the seven signals that are 
used as inputs to both TLPs. The second one computes the 
outputs of the TLPs themselves, which correspond to the 
real and imaginary parts of the complex number y[n]. 
Finally, the third one calculates the real and imaginary parts 
of the output signal.  

In what concerns the first segment, the real and 
imaginary parts of the complex-valued inputs x[n], x[n-1] 
and x[n-2] are used to calculate the seven inputs for the 
TLPs, according to Fig. 2.  

The process starts, in the first clock cycle, by calculating 
the squares of each input (both real and imaginary parts) 
using multipliers. In the second clock, the sums of real and 
imaginary parts are calculated. To compute the square roots, 
as mentioned before, linearly interpolated LUTs are used. In 
the third clock cycle, line coefficients a and b previously 
stored in the LUTs are read. The fourth clock cycle is 
responsible for the multiplications of the angular 
coefficients (a) and their respective LUT inputs and the fifth 
clock cycle for the additions of the linear coefficients (b) to 
their respective results of the previous cycle. 



 
Fig. 2. Detailed diagram of the block called input decomposition in Fig. 1.  

With the absolute values calculated, the sines and 
cosines could be obtained. Recall that these are 
trigonometric functions of an angle difference. Euler’s 
Formula defines a complex number as 

e��� � cos	
�� 
 �sin	
��.                        (1) 

Using exponential properties, it can be shown that 

e��� . e������ � e�	�������� 

e��� . e������ � cos	
� � 
���� 
 �sin	
� � 
����. (2) 

Because either exponential or trigonometric functions 
are not synthesizable (i.e. they cannot be directly translated 

into a digital logic), the expression e��� . e������ needed to 
be described using basic logics, such as adders and 
multipliers, in a way to achieve the same functionalities. By 
definition, it is given that 

�	��

|�	��|
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where x(n) is a complex number. Replacing (3) in (2), 

e��� . e������ �
�	��
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.
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�
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where ()* is the conjugate operator. The multiplication 
between two complex numbers is equivalent to four 
multiplications and two additions between two real 
numbers. 

Since the values of x(n) and x(n-1) are applied as inputs, 
and hence do not depend on any value from previous clocks, 
the multiplications and additions involving them are done in 
the first and second clock cycles and stored to be used later. 
Since the next operation is a reciprocal function, a LUT is 

used to compute the result of 
�

|�	��|
 and 

�

|�	����|
. It went from 

the sixth to eighth clock cycles and it is done in the same 
way the square root was calculated. Then, the ninth clock 
cycle is necessary to calculate  

��	�� � �	��. �*	� � 1�.
�

|�	��|
                  (5) 

and the tenth for 

�	�� � ��	��.
�

|�	����|
.                        (6) 

All of these steps are repeated for the trigonometric 
functions for 
��� � 
���. 

Now that the TLP inputs are calculated, the second 
segment, detailed in Fig. 3, begins to be executed. 

 

Fig. 3. Detailed diagram of the TLP structure.         

The perceptron is divided in three layers and has two 
neurons. The first layer is responsible for doing a linear 
combination with the weight vectors w1 and w2 (one 
corresponding to each input, both with 14 elements) and the 
biases b1 and b2 (one corresponding to each neuron). The 
operations involved here are 28 multiplications (one for 
each input) that are computed in the 11th clock cycle, and 
the sum of these values with the corresponding bias. Adding 
eight values (seven inputs plus bias) in a single clock cycle 
is not viable for the desired frequency, so this operation was 
divided into three clock cycles (12th through 14th). The 
hidden layer takes the result from the first layer and passes it 
through a hyperbolic tangent sigmoid function. Such as the 
square root and reciprocal functions, it is calculated using a 
LUT and linear interpolation, and this is done from the 15th 
through 17th clock cycles. The third and last layer takes the 
results from the second layer and multiplies each one by the 
weights h1 and h2 (18th clock cycle), and then adds the 
result to an extra bias (19th cycle). The perceptron output is 
done from 20th to 22nd clock cycles and is calculated from 
the hyperbolic tangent sigmoid function via linearly 
interpolated LUTs.  

These operations are repeated for both perceptrons, and 
their outputs correspond to the real and imaginary parts of a 
complex number. What distinguishes one perceptron from 
the other is the numeric values of the weights and biases.  

Now, with the outputs from the perceptron, it starts the 
third segment, which computes the output from the whole 
model. For it to be done, it is necessary to multiply the 
complex number formed by the outputs of the perceptrons 
by the sine and cosine from the time instant n. 

From (1) and (3), the sine and cosine are given by 

cos	
����� �  
 !"����#

|����|
                            (7) 

sin	
����� �  
$%"����#

|����|
                            (8) 

Since 
�

|����|
 was already calculated, there is no need to do 

it again. Because both sine and cosine depend only on the 
value of |����|, they were previously calculated and stored.  

Finally, the following complex multiplication is done 

&��� � �Re"(���# 
 �Im"(���#��cos	
����� 
 �sin	
����� 
� �Re"(���#. cos	
����� � Im"(���#. sin	
������ 
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The output s[n] is then obtained in the 23rd cycle, where 
the multiplications are calculated, and 24th, where the result 
of the neural network is calculated from the additions.  



IV. SIMULATION RESULTS 

The presented architecture is now applied to the inverse 
modeling of a class AB Si laterally diffused metal oxide 
semiconductor (LDMOS) PA. A 2 GHz carrier modulated by 
a 3.84 MHz 3GPP Wideband Code Division Multiple 
Access (WCDMA) envelope feeds the PA. An Agilent MXA 
N9020A vector signal analyzer (VSA) is used to collect PA 
output envelope sampled at 30.72 MHz. In Matlab software 
using floating-point arithmetic, several TLP-based models 
are trained using nonlinear least squares based on the 
Levenberg-Marquardt. Table I shows the normalized mean 
square error (NMSE) as a function of the number of hidden 
neurons. Only slightly improvements are observed for larger 
values of N. The NMSE for N = 8 is equal to -39.6 dB. 

TABLE I.  FLOATING-POINT SIMULATION RESULTS 

Number of hidden neurons  NMSE (dB) 

1 -28.1 

2 -38.1 

3 -39.4 

 A TLP-based model with 2 neurons is chosen to be 
converted to fixed-point arithmetic. Table II reports the 
fixed-point NMSE results in relation of the number of 
resolution bits, which the sign bit is not included, and of 
LUT addressable bits for the square root, reciprocal and 
hyperbolic tangent sigmoid functions. From Table II, it is 
noted that its last row case presented the best compromise 
between accuracy and complexity, such that this case is 
chosen for a hardware description language realization. 
Figure 4 presents the measured and estimated output 
amplitude as function of the input amplitude. Figure 5 
presents the measured and estimated output power spectral 
densities (PSDs). From Fig. 4, it is observed that the 
estimated and measured signals show a PA inverse behavior 
in which both are very similar to each other. From Fig. 5, it 
is noticed that outputs present small amount of distortions, 
although the estimated samples have greater levels. 

TABLE II.  FIXED-POINT SIMULATION RESULTS 

Number of 

resolution 

bits 

Number of LUT addressable bits 
NMSE 

(dB) 
Square-
root 

Reciprocal 
Hyperbolic 

tangent sigmoid 

22 10 9 8 -31.9 

23 10 9 8 -36.5 

24 10 9 7 -36.3 

24 10 9 8 -37.8 

25 9 9 8 -37.7 

25 10 9 6 -28.6 

25 9 8 8 -37.7 

25 10 9 8 -37.9  

 

Fig. 4. Output amplitudes as a function of input amplitudes.  

The fixed-point architecture is described using VHDL. 
To check the validity of the described circuit, a behavioral 
simulation is done on the ISE Software using the ISim 
Simulator to verify if the values obtained in the VHDL code 

matched the values obtained via MATLAB. All the results 
match, proving the correctness of the implemented VHDL 
code. A post-place and route simulation is also done, using 
the Xilinx Artix7 XC7A200T FPGA as target device. The 
natural delays of the operations are below one clock time. If 
a discrete-time sequence of length L with a sampling 
interval of 32.55 ns is applied at the input, then an output 
sequence with same length and sampling frequency will be 
available after a constant delay of 781.2 ns. Besides, the 
synthesized code used 3095 slice LUTs and 3362 flip-flops. 

 

Fig. 5. PSDs of output signals. 

V. CONCLUSIONS 

This work has addressed important aspects related to the 
fixed-point arithmetic description of a TLP-based model 
suitable for PA linearization purposes. The generation of 
sine and cosine of phase differences has been performed 
using the amplitude information together with a reciprocal 
function and some additional multiplications and sums. 
Square root, reciprocal and hyperbolic tangent sigmoid 
functions were replaced by lines with distinct slopes, that 
were performed by reading two line coefficients previously 
stored in LUTs, followed by a multiplication and an 
addition. Considering the high number of successive 
multiplications demanded by the TLP-based model and that 
outcomes from two input multipliers doubles the quantity of 
bits, after each multiplication half of the bits were removed 
in a way to minimize the degradation in modeling accuracy. 
Each basic operation was implemented by an exclusive 
hardware and parallelism was fully exploited to guarantee 
the fulfillment of the real-time requirements. Simulation 
results from a case study show that a modeling accuracy of -
37.9 dB in NMSE was achieved when the synthesized 
VHDL code requires 3095 slice LUTs and 3362 flip-flops.  
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